Blue Bottle

Purpose

To develop a model of a redox reaction where oxygen gas is the oxidizing agent.

Materials

- Sodium hydroxide, NaOH
- Glucose, C₆H₁₂O₆
- Methylene blue (1% in isopropyl alcohol)
- 500-mL Erlenmeyer flask with rubber stopper
- Electronic balance

Safety

- Read the SDS sheets for all chemicals before using them.
- Wear safety glasses, gloves, and lab coat.
- Sodium hydroxide is caustic. Handle with care.

Procedure

- 1. Add 200 mL of water to the 500 mL Erlenmeyer flask.
- 2. Add 5.0 g of sodium hydroxide. Stir to dissolve.
- 3. Add 5.0 g of glucose. Stir to dissolve.
- 4. Add 50 mL of water to the solution in the flask.
- 5. Add about 10 drops of 1% methylene blue indicator.
- 6. Firmly seal the flask with the appropriate sized rubber stopper.
- 7. Let the blue solution sit undisturbed.
- 8. Shake the container several times after the solution becomes colorless, then leave undisturbed.

Results

- The solution turns colorless upon standing.
- The contents of the flask are clear but turn blue upon shaking.
- When left undisturbed the flask contents turn clear.
- The process can be repeated several times.

Follow-up Teaching Notes

- Make the solutions just prior to use.
- The oxygen that dissolves upon shaking oxidizes the colorless methylene blue, turning it blue.
- The glucose reduces the blue dye, turning it back to its colorless form.
- **Related Lab:** Ward's Science Lab Activity Oscillating Reactions: The Traffic Light (470219-088)
 - Uses 20 drops of indigo carmine solution (1% in water) or 4-5 small crystals instead of methylene blue and a green to red-orange to yellow transition occurs:
 - If yellow solution is shaken gently, it will turn red-orange in color.
 - o If yellow solution is shaken more vigorously, the red-orange color solution will turn green in color.

Connections

- Redox reactions, developing a model.
- Photochemical reactions in alternate demo.

Extension

- Photochemical variation:
 - Add 2.0 g of iron(II) sulfate to 100 mL of 0.1 M sulfuric acid solution in a 250 mL Erlenmeyer flask.
 - o Add a couple of crystals of methylene blue. Mix.
 - The solution should turn nearly colorless when placed on an overhead projector. (if it remains blue, then dilute the solution).

Ward's Science Tel: (866) 260-0501 o Upon removal from the light, source the solution returns to blue color.

Disposal/Clean-up

• Neutralize the solution before washing the products down the drain (add dilute hydrochloric acid, <0.5 M, until the pH is approximately 7. Check local codes before starting any disposal activity.

Ward's Science Tel: (866) 260-0501