You Searched For: Cyclohexylsulphamoyl+chloride


13 773  results were found

SearchResultCount:"13773"

Sort Results

List View Easy View (new)

Rate These Search Results

Catalog Number: (BOSSBS-9599R-A647)
Supplier: Bioss
Description: The sense of taste provides animals with valuable information about the quality and nutritional value of food. There are four widely accepted categories of taste perception, sweet, bitter, salty, and sour. A controversial fifth taste, known as umami or monosodium glutamate (MSG), has also been described. A family of G protein coupled receptors are involved in taste perception, and includes T1R, which is involved in sweet and umami taste perception, and T2R, which is involved in bitter taste perception. The T1R family consists of three members, T1R1, T1R2, and T1R3 (1-4). These proteins form heterodimers, which alters the selectivity of the subunits (1-4). The T1R2 and T1R3 heterodimer functions as a receptor for sweet taste, and recognizes several sweet-tasting molecules, such as sucrose, saccharin, dulcin, and acesulfame-K (1–4). The T1R1 and T1R3 heterodimer recognizes L-amino-acids to perceive umami taste. Sweet taste transduction is carried out by two pathways (2). First, sucrose and other sugars activate Gas via the T1Rs, which activates adenylyl cyclase to generate cAMP. Artificial sweeteners bind to either Gbg or Gaq coupled T1Rs to activate PLCb2 and generate IP3 and DAG. Both pathways ultimately lead to neurotransmitter release. The mouse T1R3 gene maps to chromosome 4 near the Sac locus, a primary determinant of sweet preference in mice, and it is expressed in a subset of taste cells in circumvallate, foliate, and fungiform taste papillae.
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-9599R-A555)
Supplier: Bioss
Description: The sense of taste provides animals with valuable information about the quality and nutritional value of food. There are four widely accepted categories of taste perception, sweet, bitter, salty, and sour. A controversial fifth taste, known as umami or monosodium glutamate (MSG), has also been described. A family of G protein coupled receptors are involved in taste perception, and includes T1R, which is involved in sweet and umami taste perception, and T2R, which is involved in bitter taste perception. The T1R family consists of three members, T1R1, T1R2, and T1R3 (1-4). These proteins form heterodimers, which alters the selectivity of the subunits (1-4). The T1R2 and T1R3 heterodimer functions as a receptor for sweet taste, and recognizes several sweet-tasting molecules, such as sucrose, saccharin, dulcin, and acesulfame-K (1–4). The T1R1 and T1R3 heterodimer recognizes L-amino-acids to perceive umami taste. Sweet taste transduction is carried out by two pathways (2). First, sucrose and other sugars activate Gas via the T1Rs, which activates adenylyl cyclase to generate cAMP. Artificial sweeteners bind to either Gbg or Gaq coupled T1Rs to activate PLCb2 and generate IP3 and DAG. Both pathways ultimately lead to neurotransmitter release. The mouse T1R3 gene maps to chromosome 4 near the Sac locus, a primary determinant of sweet preference in mice, and it is expressed in a subset of taste cells in circumvallate, foliate, and fungiform taste papillae.
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-9599R-CY5)
Supplier: Bioss
Description: The sense of taste provides animals with valuable information about the quality and nutritional value of food. There are four widely accepted categories of taste perception, sweet, bitter, salty, and sour. A controversial fifth taste, known as umami or monosodium glutamate (MSG), has also been described. A family of G protein coupled receptors are involved in taste perception, and includes T1R, which is involved in sweet and umami taste perception, and T2R, which is involved in bitter taste perception. The T1R family consists of three members, T1R1, T1R2, and T1R3 (1-4). These proteins form heterodimers, which alters the selectivity of the subunits (1-4). The T1R2 and T1R3 heterodimer functions as a receptor for sweet taste, and recognizes several sweet-tasting molecules, such as sucrose, saccharin, dulcin, and acesulfame-K (1–4). The T1R1 and T1R3 heterodimer recognizes L-amino-acids to perceive umami taste. Sweet taste transduction is carried out by two pathways (2). First, sucrose and other sugars activate Gas via the T1Rs, which activates adenylyl cyclase to generate cAMP. Artificial sweeteners bind to either Gbg or Gaq coupled T1Rs to activate PLCb2 and generate IP3 and DAG. Both pathways ultimately lead to neurotransmitter release. The mouse T1R3 gene maps to chromosome 4 near the Sac locus, a primary determinant of sweet preference in mice, and it is expressed in a subset of taste cells in circumvallate, foliate, and fungiform taste papillae.
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-9599R-CY3)
Supplier: Bioss
Description: The sense of taste provides animals with valuable information about the quality and nutritional value of food. There are four widely accepted categories of taste perception, sweet, bitter, salty, and sour. A controversial fifth taste, known as umami or monosodium glutamate (MSG), has also been described. A family of G protein coupled receptors are involved in taste perception, and includes T1R, which is involved in sweet and umami taste perception, and T2R, which is involved in bitter taste perception. The T1R family consists of three members, T1R1, T1R2, and T1R3 (1-4). These proteins form heterodimers, which alters the selectivity of the subunits (1-4). The T1R2 and T1R3 heterodimer functions as a receptor for sweet taste, and recognizes several sweet-tasting molecules, such as sucrose, saccharin, dulcin, and acesulfame-K (1–4). The T1R1 and T1R3 heterodimer recognizes L-amino-acids to perceive umami taste. Sweet taste transduction is carried out by two pathways (2). First, sucrose and other sugars activate Gas via the T1Rs, which activates adenylyl cyclase to generate cAMP. Artificial sweeteners bind to either Gbg or Gaq coupled T1Rs to activate PLCb2 and generate IP3 and DAG. Both pathways ultimately lead to neurotransmitter release. The mouse T1R3 gene maps to chromosome 4 near the Sac locus, a primary determinant of sweet preference in mice, and it is expressed in a subset of taste cells in circumvallate, foliate, and fungiform taste papillae.
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-9599R-FITC)
Supplier: Bioss
Description: The sense of taste provides animals with valuable information about the quality and nutritional value of food. There are four widely accepted categories of taste perception, sweet, bitter, salty, and sour. A controversial fifth taste, known as umami or monosodium glutamate (MSG), has also been described. A family of G protein coupled receptors are involved in taste perception, and includes T1R, which is involved in sweet and umami taste perception, and T2R, which is involved in bitter taste perception. The T1R family consists of three members, T1R1, T1R2, and T1R3 (1-4). These proteins form heterodimers, which alters the selectivity of the subunits (1-4). The T1R2 and T1R3 heterodimer functions as a receptor for sweet taste, and recognizes several sweet-tasting molecules, such as sucrose, saccharin, dulcin, and acesulfame-K (1–4). The T1R1 and T1R3 heterodimer recognizes L-amino-acids to perceive umami taste. Sweet taste transduction is carried out by two pathways (2). First, sucrose and other sugars activate Gas via the T1Rs, which activates adenylyl cyclase to generate cAMP. Artificial sweeteners bind to either Gbg or Gaq coupled T1Rs to activate PLCb2 and generate IP3 and DAG. Both pathways ultimately lead to neurotransmitter release. The mouse T1R3 gene maps to chromosome 4 near the Sac locus, a primary determinant of sweet preference in mice, and it is expressed in a subset of taste cells in circumvallate, foliate, and fungiform taste papillae.
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-9599R-CY7)
Supplier: Bioss
Description: The sense of taste provides animals with valuable information about the quality and nutritional value of food. There are four widely accepted categories of taste perception, sweet, bitter, salty, and sour. A controversial fifth taste, known as umami or monosodium glutamate (MSG), has also been described. A family of G protein coupled receptors are involved in taste perception, and includes T1R, which is involved in sweet and umami taste perception, and T2R, which is involved in bitter taste perception. The T1R family consists of three members, T1R1, T1R2, and T1R3 (1-4). These proteins form heterodimers, which alters the selectivity of the subunits (1-4). The T1R2 and T1R3 heterodimer functions as a receptor for sweet taste, and recognizes several sweet-tasting molecules, such as sucrose, saccharin, dulcin, and acesulfame-K (1–4). The T1R1 and T1R3 heterodimer recognizes L-amino-acids to perceive umami taste. Sweet taste transduction is carried out by two pathways (2). First, sucrose and other sugars activate Gas via the T1Rs, which activates adenylyl cyclase to generate cAMP. Artificial sweeteners bind to either Gbg or Gaq coupled T1Rs to activate PLCb2 and generate IP3 and DAG. Both pathways ultimately lead to neurotransmitter release. The mouse T1R3 gene maps to chromosome 4 near the Sac locus, a primary determinant of sweet preference in mice, and it is expressed in a subset of taste cells in circumvallate, foliate, and fungiform taste papillae.
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-9599R-HRP)
Supplier: Bioss
Description: The sense of taste provides animals with valuable information about the quality and nutritional value of food. There are four widely accepted categories of taste perception, sweet, bitter, salty, and sour. A controversial fifth taste, known as umami or monosodium glutamate (MSG), has also been described. A family of G protein coupled receptors are involved in taste perception, and includes T1R, which is involved in sweet and umami taste perception, and T2R, which is involved in bitter taste perception. The T1R family consists of three members, T1R1, T1R2, and T1R3 (1-4). These proteins form heterodimers, which alters the selectivity of the subunits (1-4). The T1R2 and T1R3 heterodimer functions as a receptor for sweet taste, and recognizes several sweet-tasting molecules, such as sucrose, saccharin, dulcin, and acesulfame-K (1–4). The T1R1 and T1R3 heterodimer recognizes L-amino-acids to perceive umami taste. Sweet taste transduction is carried out by two pathways (2). First, sucrose and other sugars activate Gas via the T1Rs, which activates adenylyl cyclase to generate cAMP. Artificial sweeteners bind to either Gbg or Gaq coupled T1Rs to activate PLCb2 and generate IP3 and DAG. Both pathways ultimately lead to neurotransmitter release. The mouse T1R3 gene maps to chromosome 4 near the Sac locus, a primary determinant of sweet preference in mice, and it is expressed in a subset of taste cells in circumvallate, foliate, and fungiform taste papillae.
UOM: 1 * 100 µl


Catalog Number: (DIVEBMTM-2000)
Supplier: DIVERSIFIED BIOTECH
Description: Breathe-EASIER micropermeable membranes are ideal for cell growth, concentrating samples, and gas exchange. Formatted with an easy to use finger tab, membranes are precut to fit a variety of tube sizes. Membranes are gamma irradiated to ensure sterility and are free of cytotoxins.
UOM: 1 * 100 items


Catalog Number: (BOSSBS-9599R-A680)
Supplier: Bioss
Description: The sense of taste provides animals with valuable information about the quality and nutritional value of food. There are four widely accepted categories of taste perception, sweet, bitter, salty, and sour. A controversial fifth taste, known as umami or monosodium glutamate (MSG), has also been described. A family of G protein coupled receptors are involved in taste perception, and includes T1R, which is involved in sweet and umami taste perception, and T2R, which is involved in bitter taste perception. The T1R family consists of three members, T1R1, T1R2, and T1R3. These proteins form heterodimers, which alters the selectivity of the subunits. The T1R2 and T1R3 heterodimer functions as a receptor for sweet taste, and recognizes several sweet-tasting molecules, such as sucrose, saccharin, dulcin, and acesulfame-K. The T1R1 and T1R3 heterodimer recognizes L-amino-acids to perceive umami taste. Sweet taste transduction is carried out by two pathways. First, sucrose and other sugars activate Gas via the T1Rs, which activates adenylyl cyclase to generate cAMP. Artificial sweeteners bind to either Gbg or Gaq coupled T1Rs to activate PLCb2 and generate IP3 and DAG. Both pathways ultimately lead to neurotransmitter release. The mouse T1R3 gene maps to chromosome 4 near the Sac locus, a primary determinant of sweet preference in mice, and it is expressed in a subset of taste cells in circumvallate, foliate, and fungiform taste papillae.
UOM: 1 * 100 µl


Supplier: PARKER HANNIFIN
Description: For regulating and distributing the clean air output from a Parker compressed air dryer, FT-IR purge gas generator or self contained lab gas generator. Manifold and single flow types are available. Manifold types allow clean gas, at the regulated pressure, into the manifold where independently adjustable flow controls may be set to serve three separate instruments. Single flow types include a pressure regulator and a single flow controller. Each flow controller is equipped with a triple scale pressure gauge for 0 - 7 bar (psig, kg/cm²), a pressure regulator and a flow meter mounted on a convenient bracket for wall or panel mount installations.

Catalog Number: (BOSSBS-9599R-A750)
Supplier: Bioss
Description: The sense of taste provides animals with valuable information about the quality and nutritional value of food. There are four widely accepted categories of taste perception, sweet, bitter, salty, and sour. A controversial fifth taste, known as umami or monosodium glutamate (MSG), has also been described. A family of G protein coupled receptors are involved in taste perception, and includes T1R, which is involved in sweet and umami taste perception, and T2R, which is involved in bitter taste perception. The T1R family consists of three members, T1R1, T1R2, and T1R3. These proteins form heterodimers, which alters the selectivity of the subunits. The T1R2 and T1R3 heterodimer functions as a receptor for sweet taste, and recognizes several sweet-tasting molecules, such as sucrose, saccharin, dulcin, and acesulfame-K. The T1R1 and T1R3 heterodimer recognizes L-amino-acids to perceive umami taste. Sweet taste transduction is carried out by two pathways. First, sucrose and other sugars activate Gas via the T1Rs, which activates adenylyl cyclase to generate cAMP. Artificial sweeteners bind to either Gbg or Gaq coupled T1Rs to activate PLCb2 and generate IP3 and DAG. Both pathways ultimately lead to neurotransmitter release. The mouse T1R3 gene maps to chromosome 4 near the Sac locus, a primary determinant of sweet preference in mice, and it is expressed in a subset of taste cells in circumvallate, foliate, and fungiform taste papillae.
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-9599R)
Supplier: Bioss
Description: The sense of taste provides animals with valuable information about the quality and nutritional value of food. There are four widely accepted categories of taste perception, sweet, bitter, salty, and sour. A controversial fifth taste, known as umami or monosodium glutamate (MSG), has also been described. A family of G protein coupled receptors are involved in taste perception, and includes T1R, which is involved in sweet and umami taste perception, and T2R, which is involved in bitter taste perception. The T1R family consists of three members, T1R1, T1R2, and T1R3 (1-4). These proteins form heterodimers, which alters the selectivity of the subunits (1-4). The T1R2 and T1R3 heterodimer functions as a receptor for sweet taste, and recognizes several sweet-tasting molecules, such as sucrose, saccharin, dulcin, and acesulfame-K (1–4). The T1R1 and T1R3 heterodimer recognizes L-amino-acids to perceive umami taste. Sweet taste transduction is carried out by two pathways (2). First, sucrose and other sugars activate Gas via the T1Rs, which activates adenylyl cyclase to generate cAMP. Artificial sweeteners bind to either Gbg or Gaq coupled T1Rs to activate PLCb2 and generate IP3 and DAG. Both pathways ultimately lead to neurotransmitter release. The mouse T1R3 gene maps to chromosome 4 near the Sac locus, a primary determinant of sweet preference in mice, and it is expressed in a subset of taste cells in circumvallate, foliate, and fungiform taste papillae.
UOM: 1 * 100 µl


Catalog Number: (904-0021)
Supplier: AB SCIEX
Description: The 3500 Triple Quad system offers productivity, reliability, and robustness in a modernised entry-level mass spec for today’s analytical laboratories. The Triple Quad 3500 system offers the speed and precision you want from a modern mass spec system, with the legendary performance and dependability you trust from SCIEX technology.
UOM: 1 * 1 items


Catalog Number: (115-2736)
Supplier: Zellstoff-Vertriebs-GmbH & Co. KG
Description: These absorbent, 3-ply, low-lint wipes are made from unbleached and completely natural 100% recycled material. Also suitable for gas and repair stations.
UOM: 1 * 10 Roll


Catalog Number: (REST31822)
Supplier: Restek
Description: Foam generated as purge gas passes through a sample can enter the analytical trap and possibly the GC column. This silica-containing antifoam agent is effective over a wide pH range and will not conflict with chromatography of target analytes.
UOM: 1 * 1 Ampoul


Supplier: DWK Life Sciences
Description: Connectors for threaded pipes, with white polypropylene or black phenolic caps. Connectors can be used under moderate pressure to generate a gas or deliver a reagent under an inert atmosphere.

Inquire for Price
Stock for this item is limited, but may be available in a warehouse close to you. Please make sure that you are logged in to the site so that available stock can be displayed. If the call is still displayed and you need assistance, please call us at +43 1 97002 - 0.
Stock for this item is limited, but may be available in a warehouse close to you. Please make sure that you are logged in to the site so that available stock can be displayed. If the call is still displayed and you need assistance, please call us at +43 1 97002 - 0.
Dual use goods can only be delivered within the European Union.
Dual use goods can only be delivered within the European Union.
This product has been blocked by your organization. Please contact your purchasing department for more information.
The original product is no longer available. The replacement shown is available.
This product is no longer available. Alternatives may be available by searching with the VWR Catalog Number listed above. If you need further assistance, please call VWR Customer Service at +43 1 97002 - 0.
17 - 32 of 13 773
no targeter for Bottom