You Searched For: Optics+Learning+Activities


66 282  results were found

SearchResultCount:"66282"

Sort Results

List View Easy View (new)

Rate These Search Results

Catalog Number: (BOSSBS-11272R-CY7)
Supplier: Bioss
Description: Wolfram syndrome protein (WFS1) is an 890 amino acid protein that contains a cytoplasmic N-terminal domain, followed by nine-transmembrane domains and a luminal C-terminal domain. WFS1 is predominantly localized to the endoplasmic reticulum (ER) (1) and its expression is induced in response to ER stress, partially through transcriptional activation (2,3). Research studies have shown that mutations in the WFS1 gene lead to Wolfram syndrome, an autosomal recessive neurodegenerative disorder defined by young-onset, non-immune, insulin-dependent diabetes mellitus and progressive optic atrophy (4).
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-11272R-CY3)
Supplier: Bioss
Description: Wolfram syndrome protein (WFS1) is an 890 amino acid protein that contains a cytoplasmic N-terminal domain, followed by nine-transmembrane domains and a luminal C-terminal domain. WFS1 is predominantly localized to the endoplasmic reticulum (ER) (1) and its expression is induced in response to ER stress, partially through transcriptional activation (2,3). Research studies have shown that mutations in the WFS1 gene lead to Wolfram syndrome, an autosomal recessive neurodegenerative disorder defined by young-onset, non-immune, insulin-dependent diabetes mellitus and progressive optic atrophy (4).
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-11272R-A350)
Supplier: Bioss
Description: Wolfram syndrome protein (WFS1) is an 890 amino acid protein that contains a cytoplasmic N-terminal domain, followed by nine-transmembrane domains and a luminal C-terminal domain. WFS1 is predominantly localized to the endoplasmic reticulum (ER) (1) and its expression is induced in response to ER stress, partially through transcriptional activation (2,3). Research studies have shown that mutations in the WFS1 gene lead to Wolfram syndrome, an autosomal recessive neurodegenerative disorder defined by young-onset, non-immune, insulin-dependent diabetes mellitus and progressive optic atrophy (4).
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-11272R-A555)
Supplier: Bioss
Description: Wolfram syndrome protein (WFS1) is an 890 amino acid protein that contains a cytoplasmic N-terminal domain, followed by nine-transmembrane domains and a luminal C-terminal domain. WFS1 is predominantly localized to the endoplasmic reticulum (ER) (1) and its expression is induced in response to ER stress, partially through transcriptional activation (2,3). Research studies have shown that mutations in the WFS1 gene lead to Wolfram syndrome, an autosomal recessive neurodegenerative disorder defined by young-onset, non-immune, insulin-dependent diabetes mellitus and progressive optic atrophy (4).
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-11272R-A488)
Supplier: Bioss
Description: Wolfram syndrome protein (WFS1) is an 890 amino acid protein that contains a cytoplasmic N-terminal domain, followed by nine-transmembrane domains and a luminal C-terminal domain. WFS1 is predominantly localized to the endoplasmic reticulum (ER) (1) and its expression is induced in response to ER stress, partially through transcriptional activation (2,3). Research studies have shown that mutations in the WFS1 gene lead to Wolfram syndrome, an autosomal recessive neurodegenerative disorder defined by young-onset, non-immune, insulin-dependent diabetes mellitus and progressive optic atrophy (4).
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-11272R)
Supplier: Bioss
Description: Wolfram syndrome protein (WFS1) is an 890 amino acid protein that contains a cytoplasmic N-terminal domain, followed by nine-transmembrane domains and a luminal C-terminal domain. WFS1 is predominantly localized to the endoplasmic reticulum (ER) (1) and its expression is induced in response to ER stress, partially through transcriptional activation (2,3). Research studies have shown that mutations in the WFS1 gene lead to Wolfram syndrome, an autosomal recessive neurodegenerative disorder defined by young-onset, non-immune, insulin-dependent diabetes mellitus and progressive optic atrophy (4).
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-11272R-A647)
Supplier: Bioss
Description: Wolfram syndrome protein (WFS1) is an 890 amino acid protein that contains a cytoplasmic N-terminal domain, followed by nine-transmembrane domains and a luminal C-terminal domain. WFS1 is predominantly localized to the endoplasmic reticulum (ER) (1) and its expression is induced in response to ER stress, partially through transcriptional activation (2,3). Research studies have shown that mutations in the WFS1 gene lead to Wolfram syndrome, an autosomal recessive neurodegenerative disorder defined by young-onset, non-immune, insulin-dependent diabetes mellitus and progressive optic atrophy (4).
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-11272R-HRP)
Supplier: Bioss
Description: Wolfram syndrome protein (WFS1) is an 890 amino acid protein that contains a cytoplasmic N-terminal domain, followed by nine-transmembrane domains and a luminal C-terminal domain. WFS1 is predominantly localized to the endoplasmic reticulum (ER) (1) and its expression is induced in response to ER stress, partially through transcriptional activation (2,3). Research studies have shown that mutations in the WFS1 gene lead to Wolfram syndrome, an autosomal recessive neurodegenerative disorder defined by young-onset, non-immune, insulin-dependent diabetes mellitus and progressive optic atrophy (4).
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-11272R-CY5)
Supplier: Bioss
Description: Wolfram syndrome protein (WFS1) is an 890 amino acid protein that contains a cytoplasmic N-terminal domain, followed by nine-transmembrane domains and a luminal C-terminal domain. WFS1 is predominantly localized to the endoplasmic reticulum (ER) (1) and its expression is induced in response to ER stress, partially through transcriptional activation (2,3). Research studies have shown that mutations in the WFS1 gene lead to Wolfram syndrome, an autosomal recessive neurodegenerative disorder defined by young-onset, non-immune, insulin-dependent diabetes mellitus and progressive optic atrophy (4).
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-0175R-A488)
Supplier: Bioss
Description: Receptor tyrosine kinase involved in the development and the maturation of the central and the peripheral nervous systems through regulation of neuron survival, proliferation, migration, differentiation, and synapse formation and plasticity. Receptor for BDNF/brain-derived neurotrophic factor and NTF4/neurotrophin-4. Alternatively can also bind NTF3/neurotrophin-3 which is less efficient in activating the receptor but regulates neuron survival through NTRK2. Upon ligand-binding, undergoes homodimerization, autophosphorylation and activation. Recruits, phosphorylates and/or activates several downstream effectors including SHC1, FRS2, SH2B1, SH2B2 and PLCG1 that regulate distinct overlapping signaling cascades. Through SHC1, FRS2, SH2B1, SH2B2 activates the GRB2-Ras-MAPK cascade that regulates for instance neuronal differentiation including neurite outgrowth. Through the same effectors controls the Ras-PI3 kinase-AKT1 signaling cascade that mainly regulates growth and survival. Through PLCG1 and the downstream protein kinase C-regulated pathways controls synaptic plasticity. Thereby, plays a role in learning and memory by regulating both short term synaptic function and long-term potentiation. PLCG1 also leads to NF-Kappa-B activation and the transcription of genes involved in cell survival. Hence, it is able to suppress anoikis, the apoptosis resulting from loss of cell-matrix interactions. May also play a role in neutrophin-dependent calcium signaling in glial cells and mediate communication between neurons and glia.
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-0288R-HRP)
Supplier: Bioss
Description: Receptor tyrosine kinase involved in the development and the maturation of the central and the peripheral nervous systems through regulation of neuron survival, proliferation, migration, differentiation, and synapse formation and plasticity. Receptor for BDNF/brain-derived neurotrophic factor and NTF4/neurotrophin-4. Alternatively can also bind NTF3/neurotrophin-3 which is less efficient in activating the receptor but regulates neuron survival through NTRK2. Upon ligand-binding, undergoes homodimerization, autophosphorylation and activation. Recruits, phosphorylates and/or activates several downstream effectors including SHC1, FRS2, SH2B1, SH2B2 and PLCG1 that regulate distinct overlapping signaling cascades. Through SHC1, FRS2, SH2B1, SH2B2 activates the GRB2-Ras-MAPK cascade that regulates for instance neuronal differentiation including neurite outgrowth. Through the same effectors controls the Ras-PI3 kinase-AKT1 signaling cascade that mainly regulates growth and survival. Through PLCG1 and the downstream protein kinase C-regulated pathways controls synaptic plasticity. Thereby, plays a role in learning and memory by regulating both short term synaptic function and long-term potentiation. PLCG1 also leads to NF-Kappa-B activation and the transcription of genes involved in cell survival. Hence, it is able to suppress anoikis, the apoptosis resulting from loss of cell-matrix interactions. May also play a role in neutrophin-dependent calcium signaling in glial cells and mediate communication between neurons and glia.
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-0175R-CY5.5)
Supplier: Bioss
Description: Receptor tyrosine kinase involved in the development and the maturation of the central and the peripheral nervous systems through regulation of neuron survival, proliferation, migration, differentiation, and synapse formation and plasticity. Receptor for BDNF/brain-derived neurotrophic factor and NTF4/neurotrophin-4. Alternatively can also bind NTF3/neurotrophin-3 which is less efficient in activating the receptor but regulates neuron survival through NTRK2. Upon ligand-binding, undergoes homodimerization, autophosphorylation and activation. Recruits, phosphorylates and/or activates several downstream effectors including SHC1, FRS2, SH2B1, SH2B2 and PLCG1 that regulate distinct overlapping signaling cascades. Through SHC1, FRS2, SH2B1, SH2B2 activates the GRB2-Ras-MAPK cascade that regulates for instance neuronal differentiation including neurite outgrowth. Through the same effectors controls the Ras-PI3 kinase-AKT1 signaling cascade that mainly regulates growth and survival. Through PLCG1 and the downstream protein kinase C-regulated pathways controls synaptic plasticity. Thereby, plays a role in learning and memory by regulating both short term synaptic function and long-term potentiation. PLCG1 also leads to NF-Kappa-B activation and the transcription of genes involved in cell survival. Hence, it is able to suppress anoikis, the apoptosis resulting from loss of cell-matrix interactions. May also play a role in neutrophin-dependent calcium signaling in glial cells and mediate communication between neurons and glia.
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-12193R)
Supplier: Bioss
Description: Transcription factor required for formation of positional identity in the developing retina, regionalization of the optic chiasm and morphogenesis of the kidney. Can neuralize ectodermal cells directly By similarity. Binds to the consensus sequence 5'-A[AT]T[AG]TTTGTTT-3' and acts as a transcriptional repressor. Also acts as a transcriptional activator. Promotes development of neural crest cells from neural tube progenitors. Restricts neural progenitor cells to the neural crest lineage while suppressing interneuron differentiation. Required for maintenance of pluripotent cells in the pre-implantation and peri-implantation stages of embryogenesis. Probable transcription factor involved in embryogenesis and somatogenesis. FOXD1 is involved in regulating inflammation as well as kidney and retinal development. FOXD1 regulates the activity of NFAT and NFkB. Deficiency of FOXD1 results in multiorgan systemic inflammation, exaggerated Th cell-derived cytokine production, and T cell proliferation in autogolgous MLRs. In kidneys, FOXD1 controls the production of signals required for the normal transition of induced mesenchyme into tubular epithelium and full growth and branching of the collecting system. Deletion of FOXD1 results in renal abnormalities. FOXD2 acts as a modulator of T cell activation.
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-12193R-CY5)
Supplier: Bioss
Description: Transcription factor required for formation of positional identity in the developing retina, regionalization of the optic chiasm and morphogenesis of the kidney. Can neuralize ectodermal cells directly By similarity. Binds to the consensus sequence 5'-A[AT]T[AG]TTTGTTT-3' and acts as a transcriptional repressor. Also acts as a transcriptional activator. Promotes development of neural crest cells from neural tube progenitors. Restricts neural progenitor cells to the neural crest lineage while suppressing interneuron differentiation. Required for maintenance of pluripotent cells in the pre-implantation and peri-implantation stages of embryogenesis. Probable transcription factor involved in embryogenesis and somatogenesis. FOXD1 is involved in regulating inflammation as well as kidney and retinal development. FOXD1 regulates the activity of NFAT and NFkB. Deficiency of FOXD1 results in multiorgan systemic inflammation, exaggerated Th cell-derived cytokine production, and T cell proliferation in autogolgous MLRs. In kidneys, FOXD1 controls the production of signals required for the normal transition of induced mesenchyme into tubular epithelium and full growth and branching of the collecting system. Deletion of FOXD1 results in renal abnormalities. FOXD2 acts as a modulator of T cell activation.
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-12193R-CY3)
Supplier: Bioss
Description: Transcription factor required for formation of positional identity in the developing retina, regionalization of the optic chiasm and morphogenesis of the kidney. Can neuralize ectodermal cells directly By similarity. Binds to the consensus sequence 5'-A[AT]T[AG]TTTGTTT-3' and acts as a transcriptional repressor. Also acts as a transcriptional activator. Promotes development of neural crest cells from neural tube progenitors. Restricts neural progenitor cells to the neural crest lineage while suppressing interneuron differentiation. Required for maintenance of pluripotent cells in the pre-implantation and peri-implantation stages of embryogenesis. Probable transcription factor involved in embryogenesis and somatogenesis. FOXD1 is involved in regulating inflammation as well as kidney and retinal development. FOXD1 regulates the activity of NFAT and NFkB. Deficiency of FOXD1 results in multiorgan systemic inflammation, exaggerated Th cell-derived cytokine production, and T cell proliferation in autogolgous MLRs. In kidneys, FOXD1 controls the production of signals required for the normal transition of induced mesenchyme into tubular epithelium and full growth and branching of the collecting system. Deletion of FOXD1 results in renal abnormalities. FOXD2 acts as a modulator of T cell activation.
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-12193R-A750)
Supplier: Bioss
Description: Transcription factor required for formation of positional identity in the developing retina, regionalization of the optic chiasm and morphogenesis of the kidney. Can neuralize ectodermal cells directly By similarity. Binds to the consensus sequence 5'-A[AT]T[AG]TTTGTTT-3' and acts as a transcriptional repressor. Also acts as a transcriptional activator. Promotes development of neural crest cells from neural tube progenitors. Restricts neural progenitor cells to the neural crest lineage while suppressing interneuron differentiation. Required for maintenance of pluripotent cells in the pre-implantation and peri-implantation stages of embryogenesis. Probable transcription factor involved in embryogenesis and somatogenesis. FOXD1 is involved in regulating inflammation as well as kidney and retinal development. FOXD1 regulates the activity of NFAT and NFkB. Deficiency of FOXD1 results in multiorgan systemic inflammation, exaggerated Th cell-derived cytokine production, and T cell proliferation in autogolgous MLRs. In kidneys, FOXD1 controls the production of signals required for the normal transition of induced mesenchyme into tubular epithelium and full growth and branching of the collecting system. Deletion of FOXD1 results in renal abnormalities. FOXD2 acts as a modulator of T cell activation.
UOM: 1 * 100 µl


Inquire for Price
Stock for this item is limited, but may be available in a warehouse close to you. Please make sure that you are logged in to the site so that available stock can be displayed. If the call is still displayed and you need assistance, please call us at +43 1 97002 - 0.
Stock for this item is limited, but may be available in a warehouse close to you. Please make sure that you are logged in to the site so that available stock can be displayed. If the call is still displayed and you need assistance, please call us at +43 1 97002 - 0.
Dual use goods can only be delivered within the European Union.
Dual use goods can only be delivered within the European Union.
This product has been blocked by your organization. Please contact your purchasing department for more information.
The original product is no longer available. The replacement shown is available.
This product is no longer available. Alternatives may be available by searching with the VWR Catalog Number listed above. If you need further assistance, please call VWR Customer Service at +43 1 97002 - 0.
113 - 128 of 66 282
no targeter for Bottom