You Searched For: S-(Carboxymethyl)-L-cysteine


5 178  results were found

SearchResultCount:"5178"

Sort Results

List View Easy View (new)

Rate These Search Results

Catalog Number: (BOSSBS-5808R-CY5.5)
Supplier: Bioss
Description: CDO1 (cysteine dioxygenase, type I) is a 200 amino acid protein that belongs to the cysteine dioxygenase family and is involved in organosulfur biosynthesis. Existing as a monomer and expressed at high levels in liver and placenta and at lower levels in brain, pancreas and heart, CDO1 functions as a dioxygenase that uses iron and zinc as cofactors to catalyze the conversion of L-cysteine and oxygen to 3-sulfinoalanine. Via its catalytic activity, CDO1 is involved in pyruvate-, sulfate- and taurine-related metabolic pathways and is a crucial regulator of cysteine concentrations within the cell. Human CDO1 shares 94% amino acid identity with its rat counterpart, suggesting a conserved role between species. The gene encoding CDO1 maps to human chromosome 5, which contains 181 million base pairs and comprises nearly 6% of the human genome. Deletion of the p arm of chromosome 5 leads to Cri du chat syndrome, while deletion of the q arm or of chromosome 5 altogether is common in therapy-related acute myelogenous leukemias and myelodysplastic syndrome.PathwayOrganosulfur biosynthesis; taurine biosynthesis; hypotaurine from L-cysteine: step 1/2.
UOM: 1 * 100 µl


Catalog Number: (786-057)
Supplier: G-Biosciences
Description: ALLN is a cell permeable peptide aldehyde inhibitor of calpain I and to a lesser extent calpain II. It also inhibits other neutral cysteine proteases, cathepsin B and L and the proteasome.
UOM: 1 * 10 mg


Catalog Number: (BOSSBS-5808R-A680)
Supplier: Bioss
Description: CDO1 (cysteine dioxygenase, type I) is a 200 amino acid protein that belongs to the cysteine dioxygenase family and is involved in organosulfur biosynthesis. Existing as a monomer and expressed at high levels in liver and placenta and at lower levels in brain, pancreas and heart, CDO1 functions as a dioxygenase that uses iron and zinc as cofactors to catalyse the conversion of L-cysteine and oxygen to 3-sulfinoalanine. Via its catalytic activity, CDO1 is involved in pyruvate-, sulfate- and taurine-related metabolic pathways and is a crucial regulator of cysteine concentrations within the cell. Human CDO1 shares 94% amino acid identity with its rat counterpart, suggesting a conserved role between species. The gene encoding CDO1 maps to human chromosome 5, which contains 181 million base pairs and comprises nearly 6% of the human genome. Deletion of the p arm of chromosome 5 leads to Cri du chat syndrome, while deletion of the q arm or of chromosome 5 altogether is common in therapy-related acute myelogenous leukaemias and myelodysplastic syndrome.PathwayOrganosulfur biosynthesis; taurine biosynthesis; hypotaurine from L-cysteine: step 1/2.
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-5808R-A350)
Supplier: Bioss
Description: CDO1 (cysteine dioxygenase, type I) is a 200 amino acid protein that belongs to the cysteine dioxygenase family and is involved in organosulfur biosynthesis. Existing as a monomer and expressed at high levels in liver and placenta and at lower levels in brain, pancreas and heart, CDO1 functions as a dioxygenase that uses iron and zinc as cofactors to catalyze the conversion of L-cysteine and oxygen to 3-sulfinoalanine. Via its catalytic activity, CDO1 is involved in pyruvate-, sulfate- and taurine-related metabolic pathways and is a crucial regulator of cysteine concentrations within the cell. Human CDO1 shares 94% amino acid identity with its rat counterpart, suggesting a conserved role between species. The gene encoding CDO1 maps to human chromosome 5, which contains 181 million base pairs and comprises nearly 6% of the human genome. Deletion of the p arm of chromosome 5 leads to Cri du chat syndrome, while deletion of the q arm or of chromosome 5 altogether is common in therapy-related acute myelogenous leukemias and myelodysplastic syndrome.PathwayOrganosulfur biosynthesis; taurine biosynthesis; hypotaurine from L-cysteine: step 1/2.
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-5808R-A555)
Supplier: Bioss
Description: CDO1 (cysteine dioxygenase, type I) is a 200 amino acid protein that belongs to the cysteine dioxygenase family and is involved in organosulfur biosynthesis. Existing as a monomer and expressed at high levels in liver and placenta and at lower levels in brain, pancreas and heart, CDO1 functions as a dioxygenase that uses iron and zinc as cofactors to catalyze the conversion of L-cysteine and oxygen to 3-sulfinoalanine. Via its catalytic activity, CDO1 is involved in pyruvate-, sulfate- and taurine-related metabolic pathways and is a crucial regulator of cysteine concentrations within the cell. Human CDO1 shares 94% amino acid identity with its rat counterpart, suggesting a conserved role between species. The gene encoding CDO1 maps to human chromosome 5, which contains 181 million base pairs and comprises nearly 6% of the human genome. Deletion of the p arm of chromosome 5 leads to Cri du chat syndrome, while deletion of the q arm or of chromosome 5 altogether is common in therapy-related acute myelogenous leukemias and myelodysplastic syndrome.PathwayOrganosulfur biosynthesis; taurine biosynthesis; hypotaurine from L-cysteine: step 1/2.
UOM: 1 * 100 µl


Catalog Number: (1A03810)
Supplier: USP
Description: Rifamycin O (25 mg) (4-O-(Carboxymethyl)-1-deoxy-1,4-dihydro-4-hydroxy-1-oxo-rifamycin gamma-Lactone) 1 * 25 mg
UOM: 1 * 25 mg

New Product


Catalog Number: (BOSSBS-5808R-CY3)
Supplier: Bioss
Description: CDO1 (cysteine dioxygenase, type I) is a 200 amino acid protein that belongs to the cysteine dioxygenase family and is involved in organosulfur biosynthesis. Existing as a monomer and expressed at high levels in liver and placenta and at lower levels in brain, pancreas and heart, CDO1 functions as a dioxygenase that uses iron and zinc as cofactors to catalyze the conversion of L-cysteine and oxygen to 3-sulfinoalanine. Via its catalytic activity, CDO1 is involved in pyruvate-, sulfate- and taurine-related metabolic pathways and is a crucial regulator of cysteine concentrations within the cell. Human CDO1 shares 94% amino acid identity with its rat counterpart, suggesting a conserved role between species. The gene encoding CDO1 maps to human chromosome 5, which contains 181 million base pairs and comprises nearly 6% of the human genome. Deletion of the p arm of chromosome 5 leads to Cri du chat syndrome, while deletion of the q arm or of chromosome 5 altogether is common in therapy-related acute myelogenous leukemias and myelodysplastic syndrome.PathwayOrganosulfur biosynthesis; taurine biosynthesis; hypotaurine from L-cysteine: step 1/2.
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-5808R-A647)
Supplier: Bioss
Description: CDO1 (cysteine dioxygenase, type I) is a 200 amino acid protein that belongs to the cysteine dioxygenase family and is involved in organosulfur biosynthesis. Existing as a monomer and expressed at high levels in liver and placenta and at lower levels in brain, pancreas and heart, CDO1 functions as a dioxygenase that uses iron and zinc as cofactors to catalyze the conversion of L-cysteine and oxygen to 3-sulfinoalanine. Via its catalytic activity, CDO1 is involved in pyruvate-, sulfate- and taurine-related metabolic pathways and is a crucial regulator of cysteine concentrations within the cell. Human CDO1 shares 94% amino acid identity with its rat counterpart, suggesting a conserved role between species. The gene encoding CDO1 maps to human chromosome 5, which contains 181 million base pairs and comprises nearly 6% of the human genome. Deletion of the p arm of chromosome 5 leads to Cri du chat syndrome, while deletion of the q arm or of chromosome 5 altogether is common in therapy-related acute myelogenous leukemias and myelodysplastic syndrome.PathwayOrganosulfur biosynthesis; taurine biosynthesis; hypotaurine from L-cysteine: step 1/2.
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-5808R)
Supplier: Bioss
Description: CDO1 (cysteine dioxygenase, type I) is a 200 amino acid protein that belongs to the cysteine dioxygenase family and is involved in organosulfur biosynthesis. Existing as a monomer and expressed at high levels in liver and placenta and at lower levels in brain, pancreas and heart, CDO1 functions as a dioxygenase that uses iron and zinc as cofactors to catalyze the conversion of L-cysteine and oxygen to 3-sulfinoalanine. Via its catalytic activity, CDO1 is involved in pyruvate-, sulfate- and taurine-related metabolic pathways and is a crucial regulator of cysteine concentrations within the cell. Human CDO1 shares 94% amino acid identity with its rat counterpart, suggesting a conserved role between species. The gene encoding CDO1 maps to human chromosome 5, which contains 181 million base pairs and comprises nearly 6% of the human genome. Deletion of the p arm of chromosome 5 leads to Cri du chat syndrome, while deletion of the q arm or of chromosome 5 altogether is common in therapy-related acute myelogenous leukemias and myelodysplastic syndrome.PathwayOrganosulfur biosynthesis; taurine biosynthesis; hypotaurine from L-cysteine: step 1/2.
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-5808R-A488)
Supplier: Bioss
Description: CDO1 (cysteine dioxygenase, type I) is a 200 amino acid protein that belongs to the cysteine dioxygenase family and is involved in organosulfur biosynthesis. Existing as a monomer and expressed at high levels in liver and placenta and at lower levels in brain, pancreas and heart, CDO1 functions as a dioxygenase that uses iron and zinc as cofactors to catalyze the conversion of L-cysteine and oxygen to 3-sulfinoalanine. Via its catalytic activity, CDO1 is involved in pyruvate-, sulfate- and taurine-related metabolic pathways and is a crucial regulator of cysteine concentrations within the cell. Human CDO1 shares 94% amino acid identity with its rat counterpart, suggesting a conserved role between species. The gene encoding CDO1 maps to human chromosome 5, which contains 181 million base pairs and comprises nearly 6% of the human genome. Deletion of the p arm of chromosome 5 leads to Cri du chat syndrome, while deletion of the q arm or of chromosome 5 altogether is common in therapy-related acute myelogenous leukemias and myelodysplastic syndrome.PathwayOrganosulfur biosynthesis; taurine biosynthesis; hypotaurine from L-cysteine: step 1/2.
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-5808R-CY7)
Supplier: Bioss
Description: CDO1 (cysteine dioxygenase, type I) is a 200 amino acid protein that belongs to the cysteine dioxygenase family and is involved in organosulfur biosynthesis. Existing as a monomer and expressed at high levels in liver and placenta and at lower levels in brain, pancreas and heart, CDO1 functions as a dioxygenase that uses iron and zinc as cofactors to catalyze the conversion of L-cysteine and oxygen to 3-sulfinoalanine. Via its catalytic activity, CDO1 is involved in pyruvate-, sulfate- and taurine-related metabolic pathways and is a crucial regulator of cysteine concentrations within the cell. Human CDO1 shares 94% amino acid identity with its rat counterpart, suggesting a conserved role between species. The gene encoding CDO1 maps to human chromosome 5, which contains 181 million base pairs and comprises nearly 6% of the human genome. Deletion of the p arm of chromosome 5 leads to Cri du chat syndrome, while deletion of the q arm or of chromosome 5 altogether is common in therapy-related acute myelogenous leukemias and myelodysplastic syndrome.PathwayOrganosulfur biosynthesis; taurine biosynthesis; hypotaurine from L-cysteine: step 1/2.
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-5808R-A750)
Supplier: Bioss
Description: CDO1 (cysteine dioxygenase, type I) is a 200 amino acid protein that belongs to the cysteine dioxygenase family and is involved in organosulfur biosynthesis. Existing as a monomer and expressed at high levels in liver and placenta and at lower levels in brain, pancreas and heart, CDO1 functions as a dioxygenase that uses iron and zinc as cofactors to catalyse the conversion of L-cysteine and oxygen to 3-sulfinoalanine. Via its catalytic activity, CDO1 is involved in pyruvate-, sulfate- and taurine-related metabolic pathways and is a crucial regulator of cysteine concentrations within the cell. Human CDO1 shares 94% amino acid identity with its rat counterpart, suggesting a conserved role between species. The gene encoding CDO1 maps to human chromosome 5, which contains 181 million base pairs and comprises nearly 6% of the human genome. Deletion of the p arm of chromosome 5 leads to Cri du chat syndrome, while deletion of the q arm or of chromosome 5 altogether is common in therapy-related acute myelogenous leukaemias and myelodysplastic syndrome.PathwayOrganosulfur biosynthesis; taurine biosynthesis; hypotaurine from L-cysteine: step 1/2.
UOM: 1 * 100 µl


Catalog Number: (PRSI92-212)
Supplier: ProSci Inc.
Description: MGMT belongs to the family of transferases, specifically those transferring one-carbon group methyltransferases. MGMT involved in the cellular defense against the biological effects of O6-methylguanine in DNA. Repairs alkylated guanine in DNA by stoichiometrically transferring the alkyl group at the O-6 position to a cysteine residue in the enzyme. MGMT catalyses the chemical reaction: DNA (containing 6-O-methylguanine) and proteinL-cysteine into DNA (without 6-O-methylguanine) and protein S-methyl-L-cysteine.
UOM: 1 * 50 µG


Supplier: Cayman Chemical
Description: Alliin is a cysteine sulfoxide constituent of garlic that is converted by alliinase to allicin, which imparts its pungent aroma and flavor.

Catalog Number: (PRSI31-063)
Supplier: ProSci Inc.
Description: Serine (or cysteine) proteinase inhibitor, clade H (heat shock protein 47), member 1, (collagen binding protein 1)
UOM: 1 * 100 µG


Catalog Number: (BOSSBS-8300R-HRP)
Supplier: Bioss
Description: Peroxiredoxin (Prx) is an antioxidant enzyme detoxifying reactive oxygen species and has a cysteine at the active site. Prx enzymes modulate various receptor signaling pathways and protect cells from oxidatively induced death. Peroxiredoxin 1 to 4 have two conserved Cys residues corresponding to Cys51 and Cys172 of mammalian Peroxiredoxin 1. The active site cysteine(Cys51) is oxidized to cysteine sulfenic acid(Cys51-SOH) when a peroxide is reduced. Because Cys51-SOH is unstable, it forms a disulfide with Cys172-SH which comes from the other subunit of the homodimer. The disulfide is then reduced back to the Prx active thiol form by the thioredoxin-thioredoxin reductase system. However, the formation of the disulfide is a slow process. Thus under oxidative stress conditions, the sulfenic intermediate(Cys51-SOH) can be easily over oxidized to cysteine sulfinic acid(Cys-SO2H) or cysteine sulfonic acid(Cys-SO3H) before it is able to form a disulfide. Recent studies suggest that over oxidized Prx can be reduced back to the active form during recovery after oxidative stress.
UOM: 1 * 100 µl


Inquire for Price
Stock for this item is limited, but may be available in a warehouse close to you. Please make sure that you are logged in to the site so that available stock can be displayed. If the call is still displayed and you need assistance, please call us at +43 1 97002 - 0.
Stock for this item is limited, but may be available in a warehouse close to you. Please make sure that you are logged in to the site so that available stock can be displayed. If the call is still displayed and you need assistance, please call us at +43 1 97002 - 0.
Dual use goods can only be delivered within the European Union.
Dual use goods can only be delivered within the European Union.
This product has been blocked by your organization. Please contact your purchasing department for more information.
The original product is no longer available. The replacement shown is available.
This product is no longer available. Alternatives may be available by searching with the VWR Catalog Number listed above. If you need further assistance, please call VWR Customer Service at +43 1 97002 - 0.
497 - 512 of 5 178
no targeter for Bottom